1 Numerical Integration

1. True **FALSE** Using the left endpoint/right endpoint/midpoint rule/trapezoid rule/Simpson's rule to approximate an integral will only give you an approximate answer and never the real answer.

Solution: These methods try to approximate the integral of a function using the area of things that we know. The left/right/midpoint methods try to approximate the function with rectangles and so if your function looks like a rectangle (constant function), then the methods will give you the exact answer. If sections of your function looks like a trapezoid (e.g. a linear function), then the trapezoid method will give you an exact answer. And finally, if your function is already a parabola, then Simpson's method will give you the exact answer since it approximates your function with a polynomial.

2. Approximate $\int_{1}^{2} x^{2} dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

Solution: First we divide up our interval [1, 2] into 6 intervals, each of length $\frac{1}{6}$. They are $[1, \frac{7}{6}], [\frac{7}{6}, \frac{8}{6}], [\frac{8}{6}, \frac{9}{6}], [\frac{9}{6}, \frac{10}{6}], [\frac{10}{6}, \frac{11}{6}], [\frac{11}{6}, 2]$. For midpoint, we plug in the midpoint of each interval into our function. Let $f(x) = x^2$, then we have that

$$M_{6} = \frac{1}{6} \left[f\left(\frac{1+\frac{7}{6}}{2}\right) + f\left(\frac{\frac{7}{6}+\frac{8}{6}}{2}\right) + \dots + f\left(\frac{\frac{11}{6}+2}{2}\right) \right]$$

For the trapezoid method, we plug in our function in at the left and right endpoints and take the average of those values, so we have that

$$T_{6} = \frac{1}{6} \left[\frac{f(1) + f\left(\frac{7}{6}\right)}{2} + \frac{f\left(\frac{7}{6}\right) + f\left(\frac{8}{6}\right)}{2} + \dots + \frac{f\left(\frac{11}{6}\right) + f(2)}{2} \right]$$

Finally, Simpson's method is a big harder. We need to divide the whole expression by 3 and then the weight which we give each height is in the pattern 1, 4, 2, 4, 2, 4, $\ldots, 4, 2, 4, 1$. Doing this gives us

$$S_{6} = \frac{1}{3} \cdot \frac{1}{6} \left[f\left(1\right) + 4f\left(\frac{7}{6}\right) + 2f\left(\frac{8}{6}\right) + 4f\left(\frac{9}{6}\right) + 2f\left(\frac{10}{6}\right) + 4f\left(\frac{11}{6}\right) + f\left(2\right) \right].$$

The	results are	shown in th	ne table bel	ow:	
n	L_n	R_n	M_n	T_n	S_n
4	1.968750	2.718750	2.328125	2.343750	2.3333333
6	2.087963	2.587963	2.331019	2.337963	2.3333333
10	2.185000	2.485000	2.332500	2.335000	2.333333

3. Approximate $\int_0^1 \cos(2x) dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

	n	L_n	R_n	M_n	T_n	S_n
Solution:	4	0.622156	0.268119	0.459419	0.445137	0.454811
Solution.	6	0.568443	0.332419	0.456760	0.450431	0.454680
	10	0.523940	0.382325	0.455407	0.453132	0.454653

4. Approximate $\int_0^2 e^{2x} dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

	n	L_n	R_n	M_n	T_n	S_n
Solution:	4	15.596437	42.395512	25.714178	28.995975	26.931923
Solution:	6	18.851333	36.717383	26.309155	27.784358	26.826998
	10	21.795632	32.515262	26.621245	27.155447	26.802815

5. Approximate $\int_{-1}^{1} x^3 dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

	n	L_n	R_n	M_n	T_n	S_n
Solution:	4	-0.500000	0.500000	0.000000	0.000000	0.000000
Solution.	6	-0.333333	0.333333	0.000000	0.000000	0.000000
	10	-0.200000	0.200000	0.000000	0.000000	0.000000

6. Approximate $\int_{1}^{3} \ln x dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

	n	L_n	R_n	M_n	T_n	S_n
Solution:	4	1.007452	1.556758	1.302645	1.282105	1.295322
Solution:	6	1.106594	1.472798	1.298895	1.289696	1.295721
	10	1.183758	1.403480	1.296944	1.293619	1.295821

7. Approximate $\int_{1}^{2} xe^{x} dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

	n	L_n	R_n	M_n	T_n	S_n
Solution:	4	5.968575	8.983532	7.345610	7.476053	7.389616
Solution:	6	6.422771	8.432742	7.369716	7.427756	7.389167
	10	6.800003	8.005986	7.382088	7.402995	7.389071

8. Approximate $\int_{1}^{4} \sqrt{x} dx$ using the midpoint rule, trapezoid rule, and Simpson's rule with n = 4.

	n	L_n	R_n	M_n	T_n	S_n
Solution:	4	4.280093	5.030093	4.672401	4.655093	4.666221
Solution.	6	4.411488	4.911488	4.669245	4.661488	4.666563
	10	4.514796	4.814796	4.667601	4.664796	4.666652